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must have a solution such that Ilt = Ijt l1h = 0 and which will trans-
form according to the law of transformation of the coefficients of pro-
jective connection. By repeated application of (4.2) and (4.3) we find
that (4.4) are completely integrable and although in general the solutions

n(n- 1) (n+2)
will not be coefficients of projective connection, a) 2 of them
will satisfy all the conditions of the problem.
The same set of vectors t can serve as the components for a simply

transitive group of affine collineations, as the equations

a k =- . R~,SR;7 -rtJRmk + rtmRj + rmJR: (4.5)

are also completely integrable. The general solutions of (4.5) are coeffi-
n2(n+1)

cients of asymmetric connection, co 2 of them being coefficients of affine
connection. There exists only one manifold, its coefficients of connection
being Rjk, with respect to which each of the given vectors a is a parallel
vector field.

1 Eisenhart, L. P., and Knebelman, M. S., these PROCZZDINGS, 13, 1927, p. 38.
2 Eisenhart, L. P., Ibid., 8, 1922, p. 236.
3 Veblen, O., and Thomas, J. M., Ann. Math., 27, 1926, p. 287.
4 Loc. cit., pp. 288-291.
6 Eisenhart, L. P., Riemannian Geometry, 1926, Chap. VI.
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1. On Fraunhofer Diffraction Phenomena.-Before attacking the Fresnel
problems we shall restate some of the considerations of our last paper,
dealing with the Fraunhofer diffraction in a new form suitable for generaliz-
ation.2 The main' question discussed in that paper was as to the intensity
of light diffracted by any optical structure at a given angle to the incident
beam. We saw there that the "electronic intensity," p of the diffracting
system is a function of the space which may be referred to any system
of coordinates. Let us use a rectangular cartesian system x, y, z and de-
note the cosines of the angles between the axes and the direction of the
incident ray by ao, 13o, yo.
The general expression for the electronic density can then be given in

terms of a three-fold Fourier integral
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r+co +co +c

p(x, Y, z) = f dAif dw2f Aw,iccos (c,lx + w'2Y + W8Z
-co -co - a

- 51c,,,)dca3, (1)
where

Ao1r+ +c+ +c
AZleal^@3 = 8 3 du f dvf p(u, v, w) cos (wlu + w2v

8 + w8w)dw. (2)

This means that the actual electronic density can be always built up by
a superposition of a three-fold infinitv of sinusoidal elementary lattices.
Each elementary lattice consisting of uniform plane layers perpendicular
to the direction (wix + w"y + C3Z)/Vw +\ 2 +w2 .
On the other hand we have seen in section 3 of the paper referred to that,

from a classical point of view, the mean amplitude of the secondary radia-
tion emitted in a direction a, ,, -y is the modulus of

+ co

t-[X(a-ao)+Y(P-o)+ Z( - O)lS(a, ;, 'y) =Cf dxf dy PpeXdz. (3)
sJ~~~c-, a -co

We see that the expressions of A and S become identical (apart from
the constant C), when

Wl = 2ir(a - ao)/X, w2 = 2zr(#- fo)/X, w3 = 2r(,y - yo)/X. (4)

This means that out of our infinity of lattices only that one is responsible
for the reflected beam (3) for which the coefficients w1, W2, w3 satisfy
relations (4). In fact, let us consider the special case when our structure
is of such a constitution that A has a finite value only for the arguments
(4) and is zero for all other values of Wi, w2, w3. From the comparison of
(2) and (3) it follows that the diffracted intensity will have a finite value
only for the direction a, ,3, y and will vanish for all other directions. The
general case can be regarded as a superposition of such special cases, so
that each elementary lattice throws its whole 'intensity in only one direction.

It is useful to adapt the system of coordinates to the direction of the
diffracted ray under consideration. Let us consider the directions of the
primary and the secondary ray as known and including an angle 2(p,
and let us choose as x-axis the bisectrix of the angle between the secondary
ray and the negative direction of the primary, as y-axis the bisectrix of the
adjacent angle (between the positive directions of the primary and the
secondary ray) and as z-axis the perpendicular to x and y. We will have
then a = cos so, ao= -cos so, , = =sin $p, ry = -yo = 0. Equations
(4) take the form

Wl = 47r cos s/x, W23-O. W = 0

VOL. 13, 1927 401

(5)



PHYSICS: EHRENFEST AND EPSTEIN

This means that the plane layers of the responsible lattice are at right
angles to the x-axis and in a position with respect to the primary and
secondary ray corresponding to a regular reflection from those layers.
The spacing a of this lattice is connected with co, by the relation 27r/a = CO
and satisfies, therefore, the Bragg relation

2a cos (p = X. (6)

The expression (3) for the.reflected intensity assumes the simpler form

r+OD +co +c

S = C' dx] dy] pe$wlXdz. (7)
_co coD co

It was shown in paper I (section 2) that in the act of reflection the x-.
component of the momentum carried by the light wave is changed bv the
amount h/a for every energy quantum hv.

2. Fresnel Diffraction from the Classical Point of View.-We shall use
the same degree of accuracy that is used in most text books3 developing the
Huyghens principle. That is, we shall assume that the amplitude of
the primary wave at a distance r from the source of light 0 is given by ei' /r.
If this wave falls on a diffracting structure having the electronic density
p, every element of this structure becomes a secondary source emitting
light according to the same law. In a second point O' the intensity of the
scattered or diffracted light is, therefore, represented by the modulus of
the well-known expression

S =C f pdx dy dZ (8)

where r denotes the distance from 0 to the scattering element dx dy dz,
r' the distance from that element to O', and where the integral is to be
extended over the whole volume of the diffracting structure.
We can construct an analogy with formula (7) of the last section if we

introduce instead of the cartesian coordinates x, y, z a new system of curvi-
linear variables, so that r + r' = t is one of them. This can be done in
the following way. Let us denote the distance 00' by f, let us choose the
origin of the cartesian system in the middle of that distance, and the
x-axis coinciding with the line 00'. The new coordinates {, , s will then
be given by the relations

- Z, y = - %t2 _f2. Vf2-"2cos ,2f 2f

2fsi p
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The surfaces t = const. are a family of confocal stretched ellipsoids of
rotation while the surfaces 7 = const. are the orthogonal family of con-
focal hyperboloids. We have further

r + r', Xj = r-r' (10)
The line elements in the respective directions t, i, p are given by

dst = d1d ,
ds = 1 7dr 1,,=f "2 2 f- (11)

ds1, =-\V 2 f2 Vxf27i72dp.2f

The volume element, correspondingly,

dV = T(,, ,p)dt dr d(p = - (S22- 2)dtdq cdAo. (12)
8f

Finally the angle 4- between r and the normal to the eilipsoid t = const.

Cos4= 2- (13)

With these substitutions r/rr' = 1/2f, so that (8) becomes

c r+co +f 2,r j2rS = fJ t J+df2 petX d9,. (14)

The analogy with the case of the last section is a far reaching one. As
there by formula (1), we can represent p by a Fourier expression. The
only difference is that, due to the finite variability of v (from -f to +f)
and p (from 0 to 27r), two of the integrations must be replaced by sum-
mations:

+ co +00 + co
pQ,7 so) = J dw, n2 'n3A4,n2n3 cos (colt + - n2? + nfsP - tn nt

_OM co -00 f

(15)

ACOMM- e"COn2ns - JC1ffXfdup( ) X flD+nlw) dw.

(16)

Again we see that the distribution of density can be represented by super-
position of a three-fold infinity of curved elementary lattices. The
comparison of (16) and (14) shows, in close analogy to section 1, that for
the secondary pencil only that elementary lattice is responsible for which

Wl = 27r/X, n2 = 0, n3 = 0.
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This means that the responsible lattice represents a sinusoidal succession
of uniform layers characterized by the condition t = const. That is,
the layers are ellipsoids of rotation having all the common focal line 00'.
As the spacing of a lattice is given by the relation w = 27r/a we see that in
this case

a=X. (18)

From layer to layer the parameter t increases by a constant amount, equal
to the wave-length. Such a lattice has the property of converting a
divergent wave emitted in 0 into one converging toward O'.

3. Momentum of the Primary and Secondary Waves.-In this section we
shall carry the analogy with the Fraunhofer case still farther and show
that in the act of reflection from our ellipsoidal lattice there prevails a
transformation of momentum quite similar to that discovered by Duane
for the plane lattice. We shall call t-momentum the Lagrangean momen-
tum conjugated with the variable t. The amount of {-momentum carried
by the primary wave can be found in the following way. Let us consider
an element da of one of the ellipsoids t = const. and let us ask how much
s-momentum dpt passes through it in the short time dt, due to the primary
wave motion. If this element of area suddenly became perfectly absorbing,
it would absorb all of the radiation falling on it and acquire, in this way,
the momentum dpz in the time dt. As the momentum is the time integral
of a force, we have

dpt = fzdt (19)

if we denote by ft the Lagrangean generalized force exercised by the
primary wave on the absorbing element. If under the action of this
force the element is displaced in the direction t so that the parameter t
experiences an increase dt, the work of the force is given by

dW= f (20)

On the other hand, the same work in terms of the ordinary cartesian
force FE acting on the element in the normal direction, due to the light
pressure, will be

dW = FEdst. (21)

Comparing the two expressions for dW we find fg = Ftdsjdt and

dpt = Ftdt dst/di. (22)

The force Ft is known in theory of light pressure4 to be Ftdt =
cos pdE/c, where dE denotes the energy falling on the area da in the time
dt and i,/ the angle with the normal as in (13). It follows
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dp - O st dE. (23)
c dt

Formulae (11) and (13) of section 2 show us that cos + ds/dt = 1/2, so
that

dpt = dE/2c. (24)

As this relation is true for any pencil, it is true for any finite portion of
the primary wave:

pt = E/2c. (25)

This is a portion of the primary wave having an energy E carries a
t-momentum proportional to this energy, the constant of proportionality
being 1/2c.
Turning from the primary wave to the secondary, we notice that the

conditions in the latter have a perfect symmetry with those in the former,
the only difference being that the secondary wave is a convergent one so
that the t-momentum has the opposite sign. We can, therefore, write

Pt= -E/2c. (26)
If the energy E, originally contained in the primary wave, by reflection

from the elements of the grating, goes over to the. convergent secondary
wave, this act of reflection is connected with a change of t-momentum
pt- p = E/c. In the special case, when we consider an amount of
reflected energy E = hv, we have

Apt = hl/c = h/X. (27)

We have seen in section 2 that y = a: the wave-length is equal to the
spacing of the responsible lattice. The last relation, therefore, can be
written

Apt -a = h (28)

in which form it shows a complete analogy with Duane's rule for the change
of translatory momentum in the case of the Fraunhofer diffraction.

4. Interpretation in Terms of Light Quanta.-Let us regard the problem
sketched in the beginning of section 2 from the point of view of light
quanta. Light quanta of the frequency v are emitted by the source 0.
They can be reflected in many different ways by the elements of the optical
structure surrounding the source and having the electronic density dis-
tribution p. If, however, the analogy with the case discussed in section
1 holds still in the applications of the correspondence principle, we must
expect that the probability of the light quanta being reflected into the
point O' is associated with the same term in our Fourier expression (15)
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which is responsible in the classical theory for converting the primary wave
into a secondary wave converging towards 0'. Speaking more definitely,
the principles laid down in paper I let us expect that this probability will
be proportional to the square of the amplitude A of the responsible
lattice, defined by the conditions (16) and (17).
The "mechanism" of this reflection can be described in the following way.

Let us assume that our optical system is capable of a motion in which all
the surfaces t = const. move in a normal direction so that each surface
remains a confocal ellipsoid. The light quantum collisions of the above-
considered type are such that they impart to our optical structure just
such a motion. For the t-momentum A which the system can pick
up in aicollision with a light quantum we have to introduce the same
quantum restriction as in the case of paper I

fAptdt= h

where the integral must be extended over a period of the corresponding
lattice equal to a = X, according to (18). We get again relation (28)

Ape*a = h. (28)

The mechanical meaning of the t-momentum possessed by our structure
is the following. ILet m be the mass density in any point of our structure,
then the kinetic energy of a volume element dV in its motion in the
t-direction will be

m1
T - (dsE/dt)2dV = - m(dst/dt)212dV.2 2

The t-momentum of this element is, therefore, AT/at = m(dst/dZ)2tdV,
while the total t-momentum becomes

pt = fm(dst/di)2 dV,
the integration being extended over the whole volume of the structure.

Since the momentum acquired by the diffracting structure is supplied
by the light quantum, the latter loses an amount of nmomentum equal
to Apt = h/a = h/X = hv/c. As we have seen in section 2, the ordinary
cartesian momentum Mt in the direction t is connected with the t-momen-
tum by the relation Mdstl/dt = pt, so that the light quantum undergoes
in the collision a change of the s-component of its cartesian momentum
which, on account of the relation dsl/dt cos 4/' = 1/2, can be written

t = 2 cos 4 Apt = 2hv cos +1/c. (29)

The light quantum possesses a rectilinear momentum hv/c in the di-
rection of its-motion. In the moment when it crosses a surface t = const.
the normal component to this surface is hv cos {/c, the tangential com-
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ponent hv sin /i/c. Equation (29) shows us that in a collision the tangential
component remains unchanged, while the normal loses the amount
2hv cos {/ic and becomes, therefore, - hp cos ,//c or oppositely equal to
its value before the collision. This change corresponds to a regular
reflection from a surface t = const. and brings, therefore, the quantum
to the second focus O' of the surface.
These considerations show us that if we had a structure just consisting

of the elementary ellipsoidal lattice, all the light quanta going out of the
focus 0 would be reflected into the focus O'. In section 2 we have seen
that exactly the same conditions prevail in the case of light waves following
the classical theory. If we have a more complicated structure, the prin-
ciple of correspondence suggests that the probability of light quanta
behaving in this way will be proportional to the square of the amplitude

Wl'n2n3 of the responsible lattice. On the other hand, according to formula
(14), the intensity of the wave converging into O' will be expressed just
by the same quantity A It follows that the classical theory and the
above-sketched adaptation of the quantum theory give identical results.

5. Limitations of the Theory.-At first sight it could seem that the agree-
ment between the classical theory and the quantum theory is just as good
in the case of Fresnel diffraction as in the case of Fraunhofer diffraction.
A closer examination shows, however, that there is a considerable difference
between the two cases. To account for the Fraunhofer phenomena we
represent the electronic density as a superposition of elementary lattices
which is unique and independent of the incident and reflected radiation.
The different types of reflection we could interpret as collisions with the
individual elementary lattices. On the other hand, describing the Fresnel
phenomena, we adapted the Fourier integral (15) to the special positions
of the source of light and the point of observation. The system of elemen-
tary lattices is no longer unique, and even if we keep the source of light in
a constant position, we still have a different system for every point in
which we observe the intensity. An attempt to solve this difficulty by
attributing to all these systems equal probability and by postulating col-
lisions with the constituent lattices of all of them fails for the following
reasons. The number of these lattices is an infinity of higher order and,
if only one of them should contribute to the reflection we are interested in,
the intensity of this reflection must be infinitely small. On the other
hand, through every point in our space there pass light quanta reflected
to an infinity of other points and the question arises why they do not
contribute to the intensity in the first point. It is, therefore, clear that
the phenomena of the Fresnel diffraction cannot be explained by purely
corpuscular considerations. It is necessary to attribute to the light quanta
properties of phase and coherence similar to those of the waves of the
classical theory.5
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1 The publication of this paper, written in 1924, was delayed because the authors
were busy with other work. The recent discovery made by Davisson and Germer
(Nature, 119, p. 558, 1927) gives to the problem of corpuscular diffraction a new interest
and importance.

2 P. S. Epstein and P. Ehrenfest, these PROCZZDINGS, 10, P. 133, 1924.
3 Cf., for instance, Enzyklopddie der Math., Wiss.
4M. Planck, "Theorie der Warmestrahlung," Formula (64). The factor 2 in Planck's

formula arises from his considering a perfectly reflecting element, while we have a
perfectly absorbing one.

Since this was written, the work of de Broglie and Schroedinger has brought us
much nearer to the solution of these problems.

ABSOLUTE INTENSITIES IN THE HYDROGEN-CHLORIDE
ROTATION SPECTRUM
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GATis CHZMIcAL LABORATORY AND NORMAN BRIDGZ PHYsicALLABORATORY, PASADENA
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The development of new quantum theories which purport to furnish
a means for the prediction of the absolute intensities of spectral lines makes
it important to determine these intensities experimentally in such cases
as may be theoretically treated. One of these few is the pure rotation
spectrum as, for example, that of hydrogen chloride recently determined
in absorption by Czerny.1 This spectrum was used by Tolman and
Badger2 in the calculation of integral absorption coefficients, and so for
the determination of the experimental Bi,'s or the probabilities of transi-
tion from one energy state of rotation to the next higher in the presence
of radiation which may be absorbed. Since, however, this spectrum was
investigated with a spectrometer of not very great resolving power, this
process may have led to somewhat inaccurate results. In the present
article are described new experimental measurements on the same spectrum,
and an improved method whereby they are used to determine absolute
absorption coefficients.

If the absorption is measured at several pressures, keeping the path
length constant, an indirect method can be used for evaluating fc4v)dv,
which avoids the difficulties due to low resolving power. Suppose that
the intensity of the background radiation used in the absorption experi-
ments is the function of wave-length Io(X). If now the center of the
spectrometer slit is set on the wave-length X,, radiation of other wave
lengths between the limits of say X, + S and X, - S will be falling on the
thermocouple due to the finite slit width. We may make the reasonable
assumption that the intensity of such light of wave-length X, + a will
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